skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Otness, Karl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose a multiscale approach for predicting quantities in dynamical systems which is explicitly structured to extract information in both fine-to-coarse and coarse-to-fine directions. Our approach improves model accuracy and stability with minimally increased computation compared to non-multiscale approaches with analogous network architecture. We evaluate our approach on an idealized fluid subgrid parameterization (known as closure) task in which our multiscale networks correct chaotic underlying models to reflect the contributions of unresolved, fine-scale dynamics. 
    more » « less
    Free, publicly-accessible full text available December 19, 2026
  2. Subgrid parameterizations, which represent physical processes occurring below the resolu- tion of current climate models, are an important component in producing accurate, long-term predictions for the climate. A variety of approaches have been tested to design these com- ponents, including deep learning methods. In this work, we evaluate a proof of concept illustrating a multiscale approach to this prediction problem. We train neural networks to predict subgrid forcing values on a testbed model and examine improvements in prediction accuracy that can be obtained by using additional information in both fine-to-coarse and coarse-to-fine directions. 
    more » « less
  3. null (Ed.)
    Simulating physical systems is a core component of scientific computing, encompassing a wide range of physical domains and applications. Recently, there has been a surge in data-driven methods to complement traditional numerical simulations methods, motivated by the opportunity to reduce computational costs and/or learn new physical models leveraging access to large collections of data. However, the diversity of problem settings and applications has led to a plethora of approaches, each one evaluated on a different setup and with different evaluation metrics. We introduce a set of benchmark problems to take a step towards unified benchmarks and evaluation protocols. We propose four representative physical systems, as well as a collection of both widely used classical time integrators and representative data-driven methods (kernel-based, MLP, CNN, Nearest-Neighbors). Our framework allows to evaluate objectively and systematically the stability, accuracy, and computational efficiency of data-driven methods. Additionally, it is configurable to permit adjustments for accommodating other learning tasks and for establishing a foundation for future developments in machine learning for scientific computing. 
    more » « less